
More Automation in Model Driven Development 15

A Case Study and Model Transformations Experimentations

We provide here additional information on one of the case studies, the door automate:
an extract of the logical model and examples of student’s implementation models.

A case study is simple, to be easily understood, and complete to cover a represen-
tative set of software development artefacts including object communications that goes
beyond the simple procedure call and object protocols ordering the API method invoca-
tion. We chose a simple control systems in cybernetics and selected a simplified home
automation equipment (domotic): a garage door including hardware devices (remote
control, door, PLC, sensor, actuators ...) and the software that drives these devices17.

A.1 Logical Model

In cybernetics, SysML [25] is recommended for PLC design e.g. the detailed SysML
model of a transmission control for Lego NXT18 has been simulated by the Cameo tool.
However we chose UML because it belongs to the student’s program and because the
UML modelling ecosystem is rich. We provide a Software Requirements Specification

(SRS) and a logical model (LM) of the case given in the UML notation i.e. the class
diagram of Fig. 7 including the operation signature. Note that the SRS is larger than the
LM ; it includes for example user management for the remote, additional devices such
a warning light, motion detectors, safety and security constraints but also requirement
priority list for an agile incremental development.

The system operates as follows. Suppose the door is closed. The user starts opening
the door by pressing the open button on his remote control. It can stop the opening by
pressing the open button again, the motor stops. Otherwise, the door opens completely
and triggers the open sensor so, the motor stops. Pressing the close button close the
door if it is (partially or completely) open.

Closing can be interrupted by pressing the close button again, the motor stops.
Otherwise, the door closes completely and triggers a closed sensor sc, the motor stops.
At any time, if someone triggers an emergency stop button located on the wall, the door
will lock. To resume we turn a private key in a lock on the wall.

The remote control, when activated, reacts to two events (pressing the open button
or pressing the close button) and then simply informs the controller which button has
been pressed (Fig. 8).

The motor, when activated, can push or hire depending on the way we expect to
move the door. (Fig. 9).

The state diagram of Fig. 10 describes the behaviour of the door controller. The
actions on the doors are transferred to the engines by the door itself.

User stories can be defined in requirement analysis and refined in the logical view
of the analysis activity to be later reused as test cases in model or code verification. As

17A variant is given with an outdoor gate to access a home property. A third case is the
Riley Rover (http://www.damienkee.com/rileyrover-ev3-classroom-robot-design/)
driven by a remote android application. An additional interest of these cases (https://ev3.
univ-nantes.fr/en/) is that they can be later be integrated as subsystems in larger applica-
tions.

18https://tinyurl.com/wkja25u



16 Pascal André, Mohammed El Amin Tebib

Fig. 7. Analysis Class diagram - garage door

Fig. 8. Remote control State diagram - garage door

Fig. 9. Motor State diagram - garage door

an example, the sequence diagram of Fig. 11 describes the collaboration of the door
components when opening the door. Door actions are transferred to the motors by the
door itself.

The verification of logic models includes at least static analysis and type checking.
These can be designed as a transformation process [21] where advanced verification
of properties require model checking for communications, theorem proving for func-
tional contract assertions, and testing for behavioural conformance [20]. Most of them
requires the translation to formal methods. In the following, before refining models to
code, we assume model properties to be verified some way.



More Automation in Model Driven Development 17

Fig. 10. Door controller State diagram - garage door

Fig. 11. Opening Sequence diagram - garage door

A.2 Technical Model

We assume in the following the technical architecture made of Lego EV3 (java/Lejos)
and a remote computer (smartphone, tablet, laptop) under Android as pictured by the
deployment diagram of Fig. 12. Available wireless protocols between EV3 and the re-
mote are WiFi and bluetooth. Next step would be to select a technology in a library and
to map model elements.



18 Pascal André, Mohammed El Amin Tebib

Fig. 12. Technical Architecture - EV3 and app

A.3 Forward Engineering Implementation Model

In the case of the garage door, a basic version called v119 was proposed in 2018 and led
to the class diagram of Fig. 13. Its implementation with enumeration types for STDs
has been proposed with the physical prototype of Fig. 14 that has been extended later
until having an Android App to play the remote device with Bluetooth connection. Note
that the students implemented the door by a two panels system activated by two motors.

Fig. 13. Class Diagram of the door application (v1)

19https://github.com/demeph/TER-2017-2018



More Automation in Model Driven Development 19

Fig. 14. Lego prototype of the door system

Another implementation, called v220 led to the class diagram of Fig. 15.

Fig. 15. Class Diagram of the door application (v2)

20https://github.com/FrapperColin/2017-2018/tree/master/

IngenierieLogicielleDomoDoor



20 Pascal André, Mohammed El Amin Tebib

B Macro Transformations Experimentations

In this section, we report implementation tracks and the experimentations we led in the
context of the case study.

B.1 Deployment Transformation (T1)

The T1 composite transformation was designed manually by providing a deployment
model of Fig. 16 from the analysis models of Section A.1 and the technical architecture
of Section A.2. The bluetooth protocol has been selected to connect the EV3 and the
remote computer.

Fig. 16. Deployment diagram - garage door

In terms of transformation, the above activity is naively to group analysis classes
into component clusters and to deploy components on deployment nodes (pick and
pack). The designer must provides the component model and then interact to select
classes and map to technical elements from libraries. However new classes are neces-
sary that structure the design. Next step would be to select a technology in a library and
to map model elements.

B.2 MOM Transformation (T2)

The problem is to refine UML communications according to the basic causality princi-
ple of UML21. The causality model is quite straightforward: Objects respond to mes-
sages that are generated by objects executing communication actions. When these mes-

sages arrive, the receiving objects eventually respond by executing the behavior that

21UML Superstructure Specification, v2.3 p. 12



More Automation in Model Driven Development 21

is matched to that message. The dispatching method by which a particular behavior is

associated with a given message depends on the higher-level formalism used and is not

defined in the UML specification (i.e., it is a semantic variation point)".

Fig. 17. Basic causality
principle

During an object interaction e.g. in a sequence di-
agram, objects exchange messages (synchronous/ asyn-
chronous, call and reply, signals). A message receive event
is captured by the receiver protocol (state machine) leading
to actions (including those of do− activities inside states).
An action , described as an operation (for sake of unifor-
mity) described in the class diagram by OCL assertions
and Action Semantics statements, especially those actions
related to message sent to join back the sequence and state-
transition diagrams22.

In plain OOP, the problem yields in transforming individual message sent by gen-
erating OOP method call. In the general case the transformation is complex and takes
into account:

– the communication medium (middleware) which is implicit in UML (reliable, lost),
– the message features (call or signal, synchronous/asynchronous, call-aback, broad-

cast, unknown senders, time events...),
– the underlying protocols (TCP-IP layers of services),
– the connecting mode (stateless, session).

For example, in the case study, the remote device and the controller exchange with
session-based protocols. It is assumed the devices are physically bound: the EV3 cables
are connected sensors and adapters. A Wifi or Bluetooth connection is required to be
done manually and interactions happen during a session (open session - exchanges -
close session).

A project led by a group of master students23 explains the main issues and illus-
trates them on the conducted case study. Beyond the problem of defining the underly-
ing communication support (service and protocol implementations, configuration, ini-
tialisation), the main point, considering UML models, is to isolate the message sending
from the models before processing the communication instantiation transformation. For
a sake of simplicity, the students chose to extract messages from sequence diagrams
since the message sent are explicit24 and processed ATL transformation to introduce
lower lever communication messages. Examples of models and concrete Java code have
to be implemented. However, sequence diagrams (or communication diagrams) are in-
stance diagrams but not rules. The true sent messages are found in the actions of a
state-transition diagram or in the operations defined in the classes. The lessons learnt
from that experimentation are:

– Messages are low level concepts in terms the UML diagrams except in sequence di-
agrams. Transforming message communications implies messages to be explicit in

22Note that this principle binds sequence, state-transition and class diagrams providing a way
to check some inter-diagram consistency rules [21] but also a way to organise models.

23https://ev3.univ-nantes.fr/rapport_ter_22-05-2020/
24Abstract to raising signals or time events.



22 Pascal André, Mohammed El Amin Tebib

state-transition diagrams (actions and activities) and operations (activity diagrams
or actions). A full action language is not mandatory, only is the part related to mes-
sage and events (e.g. as a DSL).

– Some messages are simple procedure call in the target program. For example, the
communications between EV3 and the sensors/actuators are Java method calls. We
call them primitive messages in opposition to protocol message which enable dis-
tant objects to communicate.

– From the result of transformation T1, we simplify by considering that primitive
messages are used for objects deployed on the same node while protocol message
are used for objects deployed on different nodes. Recall that the deployment di-
agram provides the protocol stereotype on communication path between nodes.
Otherwise, a user information is necessary to process the transformation.

– For each communication path, we associate communication services and protocols.
This communication infrastructure (middleware) is installed and configured in the
main program.

– Each individual protocol message is transformed in a proxy call that will be in
charge of transferring the message to the receiver according to the middleware con-
figuration.

When there are variable communication media, an alternative is to consider communi-
cations as an orthogonal interoperable concern. We proposed a solution to that alterna-
tive called Multi-protocol communication tool (MPCT) in [26].

B.3 OOP Transformation (T3)

Suppose UML−java, a UML profile that accepts only UML concepts which are meaning-
ful in Java. The macro-transformation T3 transforms UMLmodels to UML−javamodels.
For a sake of conciseness, we sketch the following simplified sequence of transforma-
tions:

1. Transform STD [T3.1] associated to classes into OOP structures. Various strate-
gies (enumerations, State pattern, execution engine) are possible for the same case
study according to the nature of the automata. For example, binary states (light is
on or off) or enumerations are simple solutions for an automaton with few states,
while the State pattern [27] is useful if the associated operations have different be-
haviour from one state to another and the number of states remains limited (see
the illustrating example below). Beyond 10 states, an instrumentation machinery (a
framework) is necessary, connecting to a framework API for instantiation, inheri-
tance, call, mapping...

2. Transform Activity Diagrams (AD) associated to operations into OOP structures.
This problem is a variant of the STD transformation.

3. Transform multiple inheritance to single inheritance25 is to determine the main
inheritance flow either the first in the multiple inheritance order or by a metric

25Note that the transformation from UML classes to relational databases transforms with no
inheritance. Intermediate classes, especially those which are abstract may disappear by aggre-
gating attributes in the root or in the leaf classes. Another transformation replace inheritance by
1-to-n associations.



More Automation in Model Driven Development 23

that computes the feature reuse rank. If the target model allows the "implement"
inheritance variant e.g. Java or C# the secondary inheritance flows are defined by
interfaces. If it does not e.g. Smalltalk, features are duplicated.

4. Class-associations are transformed into classes plus associations. The multiplicity
is 1 in the new class role side.

5. Aggregations and compositions are transformed into simple associations.
6. Dependencies are transformed into <<import>> dependencies. Variants are possible

according to given stereotypes.
7. Bidirectional associations (A↔ B) are transformed into two unidirectional associa-

tions (A→ B and A← B) with a symmetric constraint ((a,b)∈ A↔ B =⇒ (b,a)∈
B↔ A). Keeping only one of both is a (good) design decision that reduces class
coupling (dependency inversion principle of the SOLID principle). It can be de-
cided automatically if no navigation path exists in the OCL constraints associated
to the model.

8. Process the meta-features (attributes, operations) is not required in Smalltalk but
it is for Java, C# or C++. They are implemented by static features in a UML-Java
profile. If other meta-facilities are used e.g. in OCL constraints, using a Factory
pattern [27] would be of interest.

9. The derived features (attributes, associations) are transformed by operations. If an
OCL constraint gives a computation, it can be an assertion of the method associated
to this operation.

10. Unidirectional associations A→ B are transformed into attributes (called references
in UML to be distinguished with primitive types or utility classes). The attribute
name is by order the role name or the association name of the implicit associa-
tion name. The type of the attribute in class A depends on the multiplicity and the
constraint:

– b : B if less or equal to 1. Note that in case of 0..1 it should be mention a union
of types B∨Null since it is optional.

– Otherwise it is a set, an ordered collection, a sorted collection, a map if the
association was qualified).

11. Operations are transformed into methods. If an OCL assertion was associated to the
operations, it can be an assertion of the method associated to this operation.

12. Stereotypes can be handle. As an example, a candidate identifier <<key>> (for per-
sistent data) lead to uniqueness constraints in OCL invariants.

13. OCL invariants are implemented by test assertions (e.g. jUnit) or operations that
are called every time an object is modified.

T3 is a transformation process implemented with intermediate steps and each rule is im-
plemented by one transformation (or macro-transformation). We could define specific
UML profiles for each intermediate step e.g. UML-SI-OOP, a UML profile dedicated
to OOP with single inheritance is an intermediate step to Java. The designer can then
select the sub-transformations and organise the macro-transformation T3.

Now we describe the experimentations on the STD sub-transformation [T3.1] in
the above sequence.



24 Pascal André, Mohammed El Amin Tebib

Example: UML2Java, a STD Transformation with ATL Due to its expressibility
and abstraction, we chose ATLAS Transformation Language (ATL)26 to conduct these
experiments. ATL is a model transformation language based on non-deterministic trans-
formation rules. In a model to model (M2M) transformation ATL reads a source model
conforming to the source meta-model and produces a target model conforming to the
target meta-model. At this stage we used model to text (M2T) transformation type to
generate Java source code. The input model is a Papyrus model (XMI format for UML
5) composed of class and state diagrams (CD + STD).

ATL proposes two modes for transformations from and refine . The from mode en-
ables to create a model by writing all the parameters, all the attributes in the output
model. The refine mode is used to copy anything that is not included in the rule into the
output template and then apply the rule. A rule can modify, create, or delete properties
or attributes in a model. In this mode, the source and target meta-models share the same
meta-model. The refine mode is more interesting for our transformations because we
are working on partial transformations. Morever we want to avoid DSL explosion, we
limit the number of metamodels or profiles by keeping UML as far as we can.

STDs are assumed to be simple automata: no composite state, no time, no history.
Also a main restriction is that state machine inheritance through class inheritance is not
allowed here because the UML rules have different interpretations and vary from one
tool to another. Most of them do not consider STD inheritance. Code style conventions
have been determined (for example, the elements Region and StateMachine have the name
of their class) that make it easier to write the transformation rules.

The UML2Java transformation is structured in three main steps:

1. Generate a Java model that have exactly the same UML-Papyrus models structure.
In this line, Fig. 18 describes the ATL rule building a target XMI model with re-
spect to Papyrus specification. The model2model rule builds the main structure of
the generated XMI model. This model, called uml_java (MM1!Model), has the same
name as the source model and contains all the instances of the UML source model
that conform to Java.

Fig. 18. Model to model transformation -basic rule

2. Once the main XMI structure of the Java target model is built. The second step copy
all the existing elements from the source model that refer to UML-Java Profile such
as Packages (MM!PackageImport), Classes (MM!Class), Attributes (MM!Property),

26https://www.eclipse.org/atl/



More Automation in Model Driven Development 25

Methods(MM!Operation). As described in Fig. 19, after a deep analysis of the XMI
file, four main elements could be copied directly to the Java target model: Package,
Class, Property and Operation. For each element, an ATL matched rule is defined.

Fig. 19. From UML elements to Java elements

3. For each UML class (MM!Class) containing a subsection (MM!StateMachine) or pos-
sibly MM!Activity), we carried out a set of ATL rules (Fig. 20) to transform this
behaviour into UML-Java. Among the alternatives given in transformation [T3.1],
we chose the State pattern because it is straight forward. According to the pattern
definition [27], the corresponding Java elements will be generated:
(a) A Java Interface representing the STD of each object,
(b) The Java class should implements the generated stateMachine interface,
(c) For each context class (1) a private attribute references the STD and (2) a public

method setState () defines of the current object state.
(d) We generated a path variable _currentState and a memory variable _previousState

if the state diagram holds a Pseudostate element of type deepHistory. Both vari-



26 Pascal André, Mohammed El Amin Tebib

ables are Property elements typed by the enumeration type. To initialize the
current state, a child element OpaqueExpression is added, with two parameters:
’language’ which takes the value ’JAVA’ and ’body’. The body parameter is ini-
tialized with the concatenation of the enumeration name and the initial state.
The initial state is found by retrieving the target state of the transition having
the initial state as source state.

(e) To determine the behaviour of the operations. For each operation used as a
trigger in a state machine, we will create a condition switch in the method
implementing the operation. To fulfil the condition, we retrieve the source state
and target state of all transitions that trigger the function. The source states
correspond to the possible cases for the change of state and the target states
correspond to the new value of the current state. We add in each case the switch

the exit action of the start state and the input action of the arrival state if any.

Fig. 20. From STD to Java elements

The experiments highlight the complexity of the problem and some basic aspects to
deal with. The results are still far from the final objectives.



More Automation in Model Driven Development 27

Fig. 21. The Java elements generated for the garage door

B.4 Source Code Transformation (T4)

Transformation T4 aims at unifying model elements and implementation (source code).
All model elements are not generated from scratch, some already exist, maybe in a
different nature, in the technical model (cf. Fig. ??). As mentioned in Section ??, we
look forward API Mapping a feature to map model elements to predefined elements in
libraries or frameworks. In this section, we study the mapping of design classes (and
operations) to predefined code source classes and we experiment source code genera-
tion. To simplify the discourse will focus on classes as to be the model elements, but it
should be extended to packages, data types, predefined types or operations and so on.

API Mapping All the classes of the model need not to be implemented, some exist
already in the technical framework. In our case study, the sensors and actuators already
exist at the code level in the Lejos library. For sake of simplicity we consider that a model
element maps to one implementation but an implementation can map to several model
elements (1-N relation). When model and implementation elements do not match, de-
velopers usually refactor the model to converge. The mapping process includes three
activities

1. Match to find implementation candidates in libraries with if possible matching
rates. Different model elements are taken into account such as class, attribute, op-
eration... We face here two issues:

– Abstraction level. Basically the model and implementation elements are not
comparable and we need a model of the implementation framework. This ab-
straction issue will be discussed in Section ??.

– Pattern matching. The model elements are not independent e.g. operations are
in classes which are grouped in packages. The way the model elements are
organised influence the matching process.



28 Pascal André, Mohammed El Amin Tebib

2. Select the adequate implementation of model element (class, attribute, operation)
and bind the model elements. We proposed a non intrusive solution of this problem
in [28].

3. Adapt to the situation. Once a mapping link is established, it usually implies to
refactor the design. Adaptation is the core mechanism to bind the two branches of
the "Y" process of Fig. ??. Several strategies can be chosen

– Encapsulate and delegate. The model classes are preserved that encapsulate the
implementation classes (Adapter pattern). The advantage are to keep traceabil-
ity and API. The drawback is the multiplication of classes to maintain.

– Replace the model classes by the implementation classes. The transformation
must replace the type declarations but also all messages sent. The pro and cons
are the inverse of encapsulation.

During forward engineering, the students used both strategies, depending on their
concerns with traceability, easy of implement, code metrics...
Replacement is possible when classes have same structure and same behaviour but
also for UML/OCL/AS primitive types. In any other cases the Adapter pattern cap-
tures multi-feature adaptations:

– Attribute: name, type adaptation, default value, visibility...
– References (role): name, type adaptation, default value, visibility...
– Operation: name, parameters (order, default), type adaptation...
– Protocol: STD for the model class but not the implementation class.
– Composition: a class is implemented by several implementation classes.
– Communication refinement: MOM communictaions are distributed.
– API layering: classify the methods to reduce the dependency.
– Design principles: improve the quality according to SOLID, IOC...

The high-level frameworks for MOM or STD are not concerned by these issues be-
cause they are pluggable components. In the remaining of this section, we describe
experimentations on code generation transformations.

Source Code Transformation with ATL This transformation is a Model-To-Text
(M2T) transformation that generates source code from the UML models resulting from
transformation T3. To parse the XMI model and generate the Java code, we defined an
ATL transformation engine composed from a set of sub-transformation rules.

1. Generate the source code structure In M2T transformations, ATL provides the con-
cept of helpers (methods) to parse the XMI model. Each helper generates a piece
of code that conforms to the Java grammar (syntax). The ATL helper of Fig. 22
organises the parse-generate process by calling sub-rules.– The GenerateClasses () helper parses every class presents in XMI model (UML-

Java) and generate the Java class code structure. It is completed by calling
other helpers: (i) GenerateAttributes () to generate the attributes correspond-
ing to each class, (ii) GenerateMethods() to generate only the signature of each
method, this helper could be extended in the future to generate the method body
from the associated activity diagram, and (iii) GenerateInterfaces () to generate
the modelled interfaces if there exist.

– The GenerateAttributes () helper parses all classes and generates all information
related to the attributes: visibility, name and type (see Fig. 23).



More Automation in Model Driven Development 29

Fig. 22. ATL transformation rule for classes

Fig. 23. ATL transformation rules for attributes

Fig. 24. ATL transformation rules for methods



30 Pascal André, Mohammed El Amin Tebib

Fig. 25. The list of the generated classes

– The GenerateMethods() helper generates the method signature: visibility, re-
turned type, name and parameters (see Fig. 24).Fig. 25 shows the list of Java files generated for the Motor model class.

These experiments highlight the complexity of the task, especially when different
alternatives exist. In the case of STD again, the design choice for states implementation
(enumeration, state pattern or machinery) impacts the remain to be done especially for
the operation -to-method transformation. For example, the STD graph can be distributed
over the operations or centralised in a unique behaviour−protocol. We advise the second
way which is easier to maintain. Other issues like threads and synchronisation have
not been discussed here because they better take place in a STD-framework. Again this
reports many implementation problem to API mapping instead of code generation.

Source Code Transformation with Papyrus Since 2017, Papyrus provides a complete
code generation from StateMachines. The implemented pattern is a part of the Papyrus
designer tool. It considers the following Statechart elements during code generation:
State, Region, Event(Call Events, SignalEvents, Time Events, ChangeEvents), Transi-
tions, Join, fork, choice, junction, shallow history, deep history, entry point, exit point,
terminate. A deep presentation of the algorithms designed to translate these elements
into code is available on [29]. As explained in section, the code generator engine of
papyrus extends IF-Else/Switch construction of programming languages that supports
state machines hierarchy. It brings many features compared to the existing tools [29]
such as:

– All statechart elements are taken into account during code generation,
– Consider sync/asynchronous behaviours through events support,
– The used UML is conformed to the OMG standard,
– Much more improvements in terms of efficiency: events processing is fast and the

generated code size is small,
– Concurrency and hierarchy support.

The generated code could be only on C++. Accordingly, we have to use ATL trans-
formation as an intermediate to adapt our papyrus UML models to our Lejos programs
based on Java programming language. The transformation pattern we implemented by



More Automation in Model Driven Development 31

ATL is based on State Design Pattern which is an oriented object approach that could
also support hierarchical state machines. These solution suffer from one limit that is
related to the explosion of the number of classes that requires much memory allocation.
Note that there is an ongoing work by Papyrus designers to add Java code generation
from STDs.

Source Code Transformation using Mapping This transformation find candidate
mappings and establish the mapping by adaptation.

a) Candidate Mapping For each class of the Model, e.g.Motor the goal is to find, if any,
candidate implementation classes in the framework to map to. A prerequisite is have
at disposal a model of the framework or to establish one if none exist yet. This point
will be discussed in Section ??.

In a previous work [30] we faced the problem of identifying components in a plain
Java program and one of the issue was to compare a UML component diagram with
extracted Java classes. We used string comparison heuristics that were efficient for 1-1
mappings with similar names. When a component was implemented by several classes,
even with naming conventions, the problem was inextricable without user expertise.
A key best practice is to put traceability annotations, just like the little thumb places
stones, to find a way back. However the problem is not really to discover the source
code to establish the traceability links but to find potential implementation of some
model classes.

In another work [28] we suggested an assistant to present elements in double lists
and to map them by drag and drop. The mapping is non intrusive and up to model
evolution. This is clearly a convenient solution for small size applications. In order to
make it applicable we suggest the general guidelines:

– Model preprocessing: use stereotypes to separate the utility or primitive classes, the
STD are not taken into account (State patterns are excluded).

– Implementation preprocessing: get an abstract model of the different implementa-
tion libraries and find the entry point libraries (cf. Section ??).

– Apply a divide and conquer strategy to avoid mapping link explosion.
1. Map parts: isolate model subsystems and implementation frameworks
2. Map concerns: isolate model points of view (design concerns) and implemen-

tation libraries
3. Map packages: isolate model packages and implementation libraries
4. Map classes: establish links between corresponding classes -if any
5. Map operations: establish links between corresponding methods -if any

As an example, we list here model classes and candidates. The implementation classes
come from the Lejos library (see Section B.5). Recall that the GUI part is considered to
be developed separately. For the simple example of class Motor, Table 2 show it is not
an easy task to detect which candidate class could be the good one. We definitely do not
look for automated mapping but mining facilities to detect candidates based on names
(class, attributes, operations), the user is in charge of deciding the class to map.



32 Pascal André, Mohammed El Amin Tebib

Table 2. Mapping candidates

Model Lejos candidates Choice Comment

Motor <<abstract>> Motor Motor class contains 3 instances
of regulated motors.

EV3Large
RegulatedMotor

Installed Actually, it depends on the in-
stalled hardware.

42 other classes or interfaces with
"*motor*.java"

lejos .hardware.motor
package

11 classes or interfaces with
"*motor*.java" over 13

ContactSensor no
EV3TouchSensor Installed
49 other classes or interfaces with

"*contact*sensor*.java"
MotionDetector no 0 classes for "*motion*.java"

EV3UltrasonicSensor Installed
Communication BTConnection if bluetooth

lejos . remote.nxt
package

Controller outside the EV3 libraries scope

Remote android App
Communication android . bluetooth .

package
installed BluetoothAdapter, BluetoothDe-

vice, BluetoothSocket

b) Adaptation To simplify the description of the mapping attributes and their injection
in the previous ATL transformation engine. we preferred to represent them as a proper-
ties file containing the list of mapping attributes. Following the ATL specification any
input file should have an XMI format and respect a description defined by its meta-
model. for this fact, we defined a model for the mapping properties as shown in Fig. 26.

Fig. 26. Adapter Pattern Model



More Automation in Model Driven Development 33

In the example of Fig. 27, the (model) class Motor delegates its method calls to the
EV3Large RegulatedMotor.

Fig. 27. Class Mapping by Adaptation of the Motor Class

Based on the specification of a simplified Adapter Pattern presented in Fig. 26, we
delegate to Adapter instances every model class that maps to one existing framework class

taking into account the following parameters: (i) Import: the packages of each class
depending on the className and packageName values, (ii) MethodCall: represents the
API calls to perform on the defined operationName existing in the class specified by
the className attribute, (iii) Attribute defines API references declaration. Based on
these parameters, our ATL transformation engine will generate the appropriate Java
code mapped to the lejos PI using three ATL helpers presented in Fig. 28.

The addAdapterAttributes helper adds for each class the specific attributes referenc-
ing objects in the corresponding Lejos framework. The getImports ATL helper maps
each class to the one of the framework. For API calls, the helper mappingMethods takes
as an input a couple of parameters representing the name of the class and the name
of the operation to be mapped. Note that addAdapterAttributes , mappingMethods() and
getImports () helpers will run based on the properties file that is defined as an instance
of the adapter model. Listing 1.1 presents the content of such a property file in the case
of Motor.

Listing 1.1. Instance of Adapter Model

1 <?xml version="1.0" encoding="UTF−8"?>

2 <Adapter xmi:version="2.0"
3 xmlns:xmi="http :// www.omg.org/XMI">
4 <methods className="Motor"



34 Pascal André, Mohammed El Amin Tebib

Fig. 28. ATL helper to generate adapted attributes

5 operatioName="push" Instruction ="EV3LargeRegulatedMotor.forward();" />
6 <methods className="Motor"
7 operatioName="hire" Instruction ="EV3LargeRegulatedMotor.backward();" />
8 <methods className="Motor"
9 operatioName="stop" Instruction ="EV3LargeRegulatedMotor.stop();" />

10 <methods className="ContactSensor"
11 operatioName="contact" Instruction ="EV3TouchSensor.fetchSample();" />
12 <methods className="MotionDetector"
13 operatioName="contact" Instruction ="EV3UltrasonicSensor.fetchSample() ;" />
14 < attributes className="Motor" attributeDeclaration =" private
15 EV3LargeRegulatedMotor ev3LargeRegulatedMotor;" />
16 < attributes className="ContactSensor"
17 attributeDeclaration =" private EV3TouchSensor ev3TouchSensor;" />
18 < attributes className="MotionDetector"
19 attributeDeclaration =" private EV3UltrasonicSensor ev3UltrasonicSensor ;" />
20 < attributes className="Communication"
21 attributeDeclaration =" private lejos . remote.nxt nxt ;" />
22 <imports className="Motor"
23 packageName="lejos.hardware.motor.EV3LargeRegulatedMotor;" />
24 <imports className="ContactSensor"
25 packageName="lejos.hardware.sensor .EV3TouchSensor;" />
26 <imports className="MotionDetector"
27 packageName="lejos.hardware.sensor .EV3UltrasonicSensor" />
28 <imports className="Communication"
29 packageName="lejos.remote.nxt.BTConnection;" />
30 </Adapter>

The result of the above adapter transformation in the simple case of class Motor is
given in Listing 1.2. It implements direct mapping for class, imports and method call.



More Automation in Model Driven Development 35

Listing 1.2. Instance of Adapter Model

1 /*
2 * Automatically generated Java code with ATL

3 @author Mohammed TEBIB & Pascal Andre

4 */

5 import lejos .hardware.motor.EV3LargeRegulatedMotor;
6

7 public class Motor implements IMotorStateMachine {
8 // attributes

9 private EV3LargeRegulatedMotor ev3LargeRegulatedMotor;
10 public Door ctrl ;
11 private IMotorStateMachine motorState ;
12

13 // methods

14 public void push(){ // delegates to EV3LargeRegulatedMotor
15 EV3LargeRegulatedMotor.forward();
16 }
17

18 public void hire (){ // delegates to EV3LargeRegulatedMotor
19 EV3LargeRegulatedMotor.backward();
20 }
21

22 public void stop (){ // delegates to EV3LargeRegulatedMotor
23 EV3LargeRegulatedMotor.stop();
24 }
25

26 public void Motor(){ // to be completed
27 }
28

29 public void setState (IMotorStateMachine motorState){
30 this . motorState=motorState;
31 }
32 }

The above transformations work for direct name-based mappings. Additional work
is necessary for more complex transformation, and currently developers have to code
more complex adaptations.

B.5 Example: Reverse engineering Lejos libraries

In our conducting case study, we use the Lejos27 framework. To abstract a Lejos PDM,
we started from the ev3classes-src.zip archive of the EV3 library because the other
Android/Java libraries are standard. Experimentations were led with Papyrus, Modisco
and AgileJ. Papyrus enabled to reverse engineer28 individual classes but not pack-
ages. In the context of a papyrus project, applying the command Java>Reverse on
lejosEV3src model elements fails except for classes. Even for a class, the methods

27Lejos is a complete Operating System based on an Oracle JVM.
28https://wiki.eclipse.org/Java_reverse_engineering



36 Pascal André, Mohammed El Amin Tebib

were not included. With Modisco [18], UML discovery from Java code is composed
of two transformations (Java to KDM / KDM to UML). Unfortunately, the second one
is no more available in the Eclipse Modelling distribution, but remains available in the
Modisco git repository. Once again, we faced two ATL compatibility problems: lazy
rules are not allowed in the refining mode and the distinct ... foreach pattern is also
forbidden in that case. Also the methods were not captured as model elements in KDM.
With AgileJ 29 reverse the Java code to UML class diagrams is simple. From a visual
point of view, we note that it provides many relationships between classes compared to
other tools like ObjectAid. Especially in the case when the number of classes is too big,
and that by (1) building and maintaining a better overview of the architecture and (2)
highlighting where the design can be improved and refactored.

In this experimentation, the working unit is the class element. For each model class,
e.g. Motor to goal is to find candidate implementation classes in the framework model.
The MDRE process aims at providing foundations classes, those which can be can-
didates for mapping. In order to reduce the number of classes to compare, we apply
the following simple heuristics: (i) focus on Java source files (479 among the KDM
elements), (ii) select only interfaces (160) and abstract classes (19), because usually
framework are structured to evolve. (iii) search according to string matching or (iv) or
better on pattern matching (including references, attributes and operations). These can
be implemented by Modisco queries. Specific stereotypes or annotations to separate
model classes are helpful in the case of iterative processing.

Fig. 29. Modisco discovery for interfaces

AgileJ provides a filter tool (cf. Fig. 30) which powerful enough to remove the noise
from the key structural elements. Once the filter is applied it changes the content of the
screen e.g. show all interfaces or show abstract classes.

In the example of class Motor, the string matching provides 11 interfaces and ab-
stract class BasicMotor. This is a reasonable set to find potential API mappings (pick and

29https://marketplace.eclipse.org/content/agilej-structureviews



More Automation in Model Driven Development 37

Fig. 30. AgileJ filter process

adapt). Note that AgileJ provides visual and interactive information while Modisco en-
ables customize query and transformation. Further experimentations are required with
Papyrus RE which is still on contribution. Other experimentations on MDRE can be
found in [17] that show the complexity of the process.

References

1. Selic, B.: Personal reflections on automation, programming culture, and model-based soft-
ware engineering. Automated Software Engineering 15(3) (Dec 2008) 379–391

2. Pressman, R.: Software Engineering: A Practitioner’s Approach. 7 edn. McGraw-Hill, Inc.,
New York, NY, USA (2010)

3. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Software Development Process. Object-
Oriented Series. Addison-Wesley (1999) ISBN 0-201-57169-2.

4. Selic, B.: From model-driven development to model-driven engineering. In: Proceedings of
the 19th Euromicro Conference on Real-Time Systems. ECRTS ’07, USA, IEEE Computer
Society (2007) 3

5. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in Practice:
Second Edition. 2nd edn. Morgan & Claypool Publishers (2017)

6. Mussbacher, G., al.: The relevance of model-driven engineering thirty years from now. In:
Model-Driven Engineering Languages and Systems: 17th International Conference, MOD-
ELS 2014, Valencia, Spain, September 28 – October 3, 2014. Proceedings, Cham, Springer
International Publishing (2014) 183–200

7. Bucchiarone, A., Cabot, J., Paige, R.F., Pierantonio, A.: Grand challenges in model-driven
engineering: an analysis of the state of the research. Software and Systems Modeling 19(1)
(2020) 5–13

8. Di Ruscio, D., Eramo, R., Pierantonio, A.: Model transformations. In Bernardo, M., Cortel-
lessa, V., Pierantonio, A., eds.: Formal Methods for Model-Driven Engineering: 12th Inter-
national School on Formal Methods for the Design of Computer, Communication, and Soft-
ware Systems, SFM 2012, Bertinoro, Italy, June 18-23, 2012. Advanced Lectures, Berlin,
Heidelberg, Springer Berlin Heidelberg (2012) 91–136

9. Paige, R.F., Matragkas, N., Rose, L.M.: Evolving models in model-driven engineering: State-
of-the-art and future challenges. Journal of Systems and Software (2016)



38 Pascal André, Mohammed El Amin Tebib

10. André, P., Tebib, M.E.A.: Refining automation system control with MDE. In Hammoudi, S.,
Pires, L.F., Selic, B., eds.: Proceedings of the 8th International Conference on Model-Driven
Engineering and Software Development, MODELSWARD 2020, Valletta, Malta, February
25-27, 2020, SCITEPRESS (2020) 425–432

11. Essebaa, I., Chantit, S.: Model driven architecture and agile methodologies: Reflexion and
discussion of their combination. In: 2018 Federated Conference on Computer Science and
Information Systems (FedCSIS). (2018) 939–948

12. Ciccozzi, F., Malavolta, I., Selic, B.: Execution of uml models: a systematic review of re-
search and practice. Software & Systems Modeling 18(3) (Jun 2019) 2313–2360

13. Pilitowski, R., Dereziñska, A.: Code generation and execution framework for uml 2.0 classes
and state machines. In Sobh, T., ed.: Innovations and Advanced Techniques in Computer and
Information Sciences and Engineering, Dordrecht, Springer Netherlands (2007) 421–427

14. Mehmood, A., Jawawi, D.N.A.: Aspect-oriented model-driven code generation: A system-
atic mapping study. Inf. Softw. Technol. 55(2) (2013) 395–411

15. Clavreul, M.: Model andMetamodel Composition: Separation of Mapping and Interpretation
for Unifying Existing Model Composition Techniques. PhD thesis, Université Rennes 1
(December 2011)

16. Raibulet, C., Fontana, F.A., Zanoni, M.: Model-driven reverse engineering approaches: A
systematic literature review. IEEE Access 5 (2017) 14516–14542

17. André, P.: Case studies in model-driven reverse engineering. In: Proceedings of the 7th
International Conference on Model-Driven Engineering and Software Development, MOD-
ELSWARD 2019, Prague, Czech Republic, February 20-22, 2019. (2019) 256–263

18. Brunelière, H., Cabot, J., Dupé, G., Madiot, F.: Modisco: A model driven reverse engineering
framework. Information and Software Technology 56(8) (2014) 1012 – 1032

19. Pepin, J., André, P., Attiogbé, C., Breton, E.: An improved model facet method to support
EA alignment. CSIMQ 9 (2016) 1–27

20. André, P., Attiogbé, C., Mottu, J.M.: Combining techniques to verify service-based com-
ponents. In: Proceedings of the International Workshop on domAin specific Model-based
AppRoaches to vErificaTion and validaTiOn, AMARETTO@MODELSWARD 2017, Porto,
Portugal (February 2017)

21. André, P., Ardourel, G.: Domain Based Verification for UML Models. In Kuzniarz, L.,
Reggio, G., Sourrouille, J.L., Staron, M., eds.: Workshop on Consistency in Model Driven
Engineering C@Mode’05. (November 2005) 47–62

22. Karsai, G., Taentzer, G., Mens, T., Gorp, P.V.: A taxonomy of model transformation. Elec-
tronic Notes in Theoretical Computer Science 152 (2006) 125 – 142 Proceedings of the
International Workshop on Graph and Model Transformation (GraMoT 2005).

23. Jakumeit, E., Buchwald, S., Wagelaar, D., Dan, L., Ábel Hegedüs, Herrmannsdörfer, M.,
Horn, T., Kalnina, E., Krause, C., Lano, K., Lepper, M., Rensink, A., Rose, L., Wätzoldt, S.,
Mazanek, S.: A survey and comparison of transformation tools based on the transformation
tool contest. Science of Computer Programming 85 (2014) 41 – 99

24. Kahani, N., Bagherzadeh, M., Cordy, J.R., Dingel, J., Varró, D.: Survey and classification of
model transformation tools. Software and Systems Modeling 18(4) (2019) 2361–2397

25. Weilkiens, T.: Systems Engineering with SysML/UML: Modeling, Analysis, Design. The
MK/OMG Press. Elsevier Science (2008)

26. André, P., Azzi, F., Cardin, O.: Heterogeneous communication middleware for digital twin
based cyber manufacturing systems. In Borangiu, T., Trentesaux, D., Leitão, P., Boggino,
A.G., Botti, V.J., eds.: Proceedings of SOHOMA. Volume 853 of Studies in Computational
Intelligence., Springer (2019) 146–157

27. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Longman Publishing Co., Inc., USA (1995)



More Automation in Model Driven Development 39

28. Pepin, J., André, P., Attiogbé, J.C., Breton, E.: Definition and visualization of virtual meta-
model extensions with a facet framework. In Hammoudi, S., Pires, L.F., Selic, B., eds.: 6th
Int. Conf. MODELSWARD 2018, Revised Selected Papers. Volume 991 of Communications
in Computer and Information Science., Springer (2018) 106–133

29. Van Cam Pham, A.R., Gérard, S., Li, S.: Complete code generation from uml state ma-
chine. In: Proceedings of the 5th International Conference on Model-Driven Engineering
and Software Development. Volume 1. (2017) 208–219

30. Anquetil, N., Royer, J., Andre, P., Ardourel, G., Hnetynka, P., Poch, T., Petrascu, D., Pe-
trascu, V.: Javacompext: Extracting architectural elements from java source code. In: 2009
16th Working Conference on Reverse Engineering. (Oct 2009) 317–318


